CE 470 | Ders Tanıtım Bilgileri

Dersin Adı
Yapay Sinir Ağlarına Giriş
Kodu
Yarıyıl
Teori
(saat/hafta)
Uygulama/Lab
(saat/hafta)
Yerel Kredi
AKTS
CE 470
Güz/Bahar
3
0
3
5

Ön Koşul(lar)
Yok
Dersin Dili
İngilizce
Dersin Türü
Seçmeli
Dersin Seviyesi
Lisans
Dersin Koordinatörü -
Öğretim Eleman(lar)ı -
Yardımcı(lar)ı -
Dersin Amacı Bu derste, Yapay Sinir Ağlarının (YSA’nın) yaygın kullanım bulan model ve algoritmaları verilecektir. Dersin içeriği temel sinir hücre modeli, algılayıcı, uyarlanır doğrusal eleman, en küçük kareler algoritması, Çok Katmanlı Algılayıcı (ÇKA), Geriye Yayılım (GY) öğrenme algoritması, Radyal Tabanlı Fonksiyon (RTF) ağları, kendi kendini düzenleyen ağ, vektör nicemlemeyi öğrenen ağ; Destek Vektör Makineleri (DVM), Sürekli zaman ve ayrık zaman Hopfield ağları, sınıflandırma teknikleri, örüntü tanıma, işaret işleme ve kontrol uygulamaları.
Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Temel yapay sinir ağ modellerini tanımlayabilecek,
  • Yaygın kullanılan YSA modellerini ve öğrenme algoritmalarını belirli bir uygulama için kullanabilecek,
  • Eğiticili ve eğiticisiz öğrenme ile genelleme yeteneğinin ilkelerini açıklayabilecek,
  • Yapay sinir ağlarını gerçek sınıflandırma, örüntü tanıma, işaret işleme ve kontrol problemlerine uygularken pratik problemleri değerlendirebilecek,
  • MATLAB ve onun Yapay Sinir Ağ Aracını kullanarak temel YSA modellerini ve algoritmalarını gerçekleştirebilecektir.
Tanımı Ders, temel yapay sinir ağları modelleri ve öğrenme algoritmalarını, algılayıcı YSA modellerini, LMS algoritmasını, geriyayılım öğrenme algoritmasını, radyal tabanlı fonksiyon ağlarını, destek vektör makinelerini, Kohonen’in kendini düzenleyen ağını, Hopfield ağlarını, yapay sinir ağlarının işaret işleme, örüntü tanıma ve kontrol uygulamalarını içermektedir.

 



Ders Kategorisi

Temel Meslek Dersleri
Uzmanlık/Alan Dersleri
Destek Dersleri
X
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

 

HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

Hafta Konular Ön Hazırlık
1 Biyolojik esinlenme. Yapay sinir ağları üzerine tarihsel notlar. Yapay sinir ağlarının uygulamaları. Yapay sinir ağ modellerinin ve öğrenme algoritmalarının bir sınıflaması. Introduction. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
2 Genel yapay sinir hücre modeli. Ayrıkdeğerli algılayıcı, eşik mantığı ve sınırları. Ayrıkzaman (dinamik) Hopfield ağları. Hebb kuralı. Bellek örüntü vektörlerinin dış çarpımı olarak başlantı ağırlık matrisi. Chapter 1. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
3 Eğiticili öğrenme. Algılayıcı öğrenme kuralı. Doğrusal uyarlanır eleman. Çıkış hatası minimizasyon problemi olarak eğiticili öğrenme. Minimizasyon için gradyendüşüm algoritması. En küçük kareler kuralı. Chapter 2. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
4 Tek katmanlı sürekli değerli algılayıcı. Doğrusal olmayan (sigmoidal) aktivasyon fonksiyonu. Delta kuralı. Grup ve veri tabanlı güncellenen gradyendüşüm algoritmaları. Deterministik ve stokastik gradyendüşüm algoritmalar için yakınsaklık koşulları. Chapter 3. Chapter 4: Sections 4.1, 4.2, 4.16. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
5 Evrensel yaklaşım makinesi olarak çok katmanlı algılayıcı. Fonksiyon gösterimleri ve yaklaşım problemi. Geriye yayılım algoritması. Yerel minimum problemi. Aşırı eğitim. Chapter 4: Sections 4.4, 4.5, 4.8, 4.10, 4.12. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
6 Yıliçi Sınavı I. Grup ve veri uyarlamalı eğitim biçimleri. Eğitim kümesine karşı test kümesi. Aşırı uyma problemi. Ağların eğitim ve testinde pratik konular. Çok katmanlı algılayıcıların işaret işleme ve örüntü tanıma uygulamaları. Chapter 4: Sections 4.3, 4.10., 4.11, 4.13, 4.14, 4.15, 4.19, 4.20. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
7 Radyal Taban Fonksiyonlu (RTF) ağlar. RTF ağlarının doğrusal ağırlıkları, Gauss merkezleri ve genişliklerini belirlemek için geriye yayılım algoritması. Merkezlerin rasgele seçimi. Gauss merkezlerinin ve genişliklerinin belirlenmesinde giriş öbekleme ve giriş çıkış öbeklemenin kıyaslanması. Düzenlileştirme kuramı, karma Gauss (koşullu olasılık yoğunluk fonksiyonu) ve yapay sinir tabanlı bulanık sistem modelleri ile RTF ağlarının ilişkileri. Chapter 5. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761 Lecture Notes.
8 Sınıflama için destek vektör makineleri. Çekirdek gösterimi. Genelleme yeteneği. Vapnik Chervonenkis boyutu. Destek vektör makineleri. Farklı çekirdek, kayıp (hata) fonksiyonu ve (ayrıştıran düzlem) yatıklığı için norm seçimlerinin karşılaştırılması. Chapter 6. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761 Lecture Notes.
9 Veri gösterimi için parametrik ve parametrik olmayan yöntemlerin kıyaslanması. Vektör nicemleme problemi olarak eğiticisiz öğrenme. Yarışmacı ağlar. “Kazanan her şeyi alır” ağı. Kohonen’in özdüzenlemeli öznitelik haritası. Öbekleme. Chapter 9. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
10 Sürekli zaman Hopfield Ağı. Hopfield ağının çokludenge noktalarının kararlılık analizi. Amaç ölçütü minimizasyonu için Hopfield ağları: Hopfield ağlarının Liapunov (enerji) tabanlı tasarımı. Çağrışımsal bellek. Gezgin satıcı problemi. Kombinatoryal optimizasyon. Chapter 13: Sections 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
11 Yıliçi Sınavı II. Yapay sinir ağlarının işaret işleme uygulamaları. Temel bileşen analizi. Veri sıkıştırma ve indirgeme. Yapay sinir ağlarının görüntü ve 1 boyutlu işaret sıkıştırma ve dönüştürme uygulamaları. Chapter 8. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761
12 Yapay sinir ağlarının örüntü tanıma uygulamaları. Öznitelik çıkarımı için yapay sinir ağları. Doğrusal olmayan öznitelik dönüşümü. Veri kaynaştırma. Sınıflayıcı olarak yapay sinir ağları. Görüntü ve ses tanıma uygulamaları. Sections 1.4,1.5., 3.11, 4.7, 5.8, 6.7, S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
13 Yapay sinir ağlarının kontrol uygulamaları. Sistem tanılama için yapay sinir ağları. Kontrolör olarak yapay sinir ağları. Ters sistem tasarımı. Doğrudan ve dolaylı denetim yöntemleri. Uyarlanır kontrol. Chapter 15: Section 15.3. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
14 Yapay sinir ağ modelleri ve ilişkin öğrenme algoritmalarının işaret işleme, örüntü tanıma ve kontrol uygulamalarının MATLAB nümerik yazılım ortamında gerçeklenmesi. Lecture Notes.
15 Yapay sinir ağ modelleri, öğrenme algoritmaları ve uygulamalarının genel değerlendirmesi. S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761. Lecture Notes.
16 Dönemin gözden geçirilmesi  

 

Dersin Kitabı S. Haykin, Neural Networks and Learning Machines, Pearson Education, 3rd Ed., 2009, ISBN13 9780131293762 ISBN10 0131293761
Diğer Kaynaklar J. M. Zurada, Int. To Artificial Neural Systems, West Publishing Company, 1992 ISBN 053495460X, 9780534954604.

 

DEĞERLENDİRME ÖLÇÜTLERİ

Yarıyıl İçi Çalışmaları Sayı Katkı Payı %
Derse Katılım
Laboratuvar / Uygulama
Arazi Çalışması
Küçük Sınavlar / Stüdyo Kritiği
Ödev
5
20
Sunum / Jüri Önünde Sunum
Proje
1
30
Çalıştay
Portfolyo
Ara Sınav / Sözlü Sınav
2
50
Final Sınavı / Sözlü Sınav
Toplam

Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı
100
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı
Toplam

AKTS / İŞ YÜKÜ TABLOSU

Aktiviteler Sayı Süresi (Saat) İş Yükü
Teorik Ders Saati
(Sınav haftası dahildir: 16 x toplam ders saati)
16
3
48
Laboratuvar / Uygulama Ders Saati
Sınav haftası dahil değildir. 16 x uygulama/lab ders saati
16
Sınıf Dışı Ders Çalışması
15
3
Arazi Çalışması
Küçük Sınavlar / Stüdyo Kritiği
Ödev
5
3
Sunum / Jüri Önünde Sunum
Proje
1
24
Çalıştay
Portfolyo
Ara Sınavlar / Sözlü Sınavlar
2
9
Final / Sözlü Sınav
    Toplam
150

 

DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

#
Program Yeterlilikleri / Çıktıları
* Katkı Düzeyi
1
2
3
4
5
1

Matematik, fen bilimleri ve elektrik-elektronik mühendisliği ile ilgili mühendislik konularında yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri mühendislik problemlerini modelleme ve çözme için uygulayabilme becerisi.

X
2

Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi.

X
3

Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. (Gerçekçi kısıtlar ve koşullar tasarımın niteliğine göre, ekonomi, çevre sorunları, sürdürülebilirlik, üretilebilirlik, etik, sağlık, güvenlik, sosyal ve politik sorunlar gibi ögeleri içerirler.)

X
4

Elektrik-elektronik mühendisliği uygulamaları için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi.

X
5

Elektrik-elektronik mühendisliği problemlerinin incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi.

X
6

Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi.

X
7

Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; ikinci bir yabancı dili orta düzeyde kullanabilir.

X
8

Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.

X
9

Mesleki ve etik sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.

X
10

Proje yönetimi ile risk yönetimi ve değişiklik yönetimi gibi iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik ve sürdürebilir kalkınma hakkında farkındalık.

11

Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ile çağın sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest